Vid. Proc. Adv. Mater., Volume 2, Article ID 2102111 (2021)

Contributions from Composite Lightweight Engineering towards A Climate-Efficient Economy

Robert Böhm

Faculty of Engineering, Leipzig University of Applied Sciences, Karl-Liebknecht-Straße 134, 04277 Leipzig, Germany

Corresponding and Presenting Author. E-mail: robert.boehm.1@htwk-leipzig.de; Tel: (+49) 341 3076 4177

DOI: 10.5185/vpoam.2021.02111

Abstract

Lightweight engineering is a key technology on the way to achieve the EU 2030 targets that aim at least 40% cuts in greenhouse gas emissions from 1990 levels, at least 32% share for renewable energy, at least 32.5% improvement in energy efficiency, and 80% reduction of greenhouse gas emissions by 2050. Therefore, an urgent need is present for a deep market transformation by deploying efficient materials and technologies for different sectors like the automotive industry, the aerospace industry, wind energy and the construction sector [1]. Composite materials play a major role within that transformation process since they unite extraordinary properties with a low weight. The award lecture gives an overview about recent developments in the field of composite lightweight engineering. Using examples of promising developments such as carbon concrete composites [2], multifunctional carbon fibre composites from renewable resources [2,3], and novel textile composites for automotive applications [4]. Beyond that, scientific and industrial efforts to increase the lifetime of composite products are discussed. This includes in particular the use of predictive modelling for a degradation forecast of the material properties [5-7], the development of novel experimental methods [8,9], and diagnostics technologies for structural monitoring [10].

References

- Koumoulos, E.P.; Trompeta, A.-F.; Santos, R.M.; Martins, M.; dos Santos, C.M.; Iglesias, V.; Böhm, R.; Gong, G.; Chiminelli, A.; Verpoest, I.; Kiekens, P.; Charitidis, C.A.: Research and Development in Carbon Fibres & Advanced High-Performance Composites Supply Chain in Europe: A roadmap for Challenges and the Industrial Uptake. *Journal of Composites Science* 3 (2019), DOI:10.3390/jcs3030086.
- 2. Böhm, R.; Thieme, M.; Wohlfahrt, D.; Wolz, D.S.; Richter, B.; Jäger, H.: Reinforcement systems for carbon concrete composites based on low-cost carbon fibers. Fibers 6 (**2018**), 56; DOI:10.3390/fib6030056.
- 3. Jäger, H.; Cherif, C.; Kirsten, M.; Behnisch, T.; Wolz, D.; Böhm, R.; Gude, M.: Influence of processing parameters on the properties of carbon fibres an overview. *Materials Science and Engineering Technology* 47 (**2016**) pp. 1044-1057.

Video Proceedings of Advanced Materials

www.proceedings.iaamonline.org

- Hufenbach, W.; Böhm, R.; Thieme, M.; Winkler, A.; Mäder, E.; Rausch, J.; Schade, M.: Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. *Materials* & *Design* 32 (2011), pp. 1468-1476.
- 5. Zscheyge, M.; Gerritzen, J.; Hornig, A.; Böhm, R.; Gude, M.: Rate dependent non-linear mechanical behaviour of continuous fibre-reinforced thermoplastic composites Experimental characterisation and viscoelastic-plastic damage modelling. *Materials & Design*, 193, (2020), 108827.
- 6. Böhm, R.; Gude, M.; Hufenbach, W.: A phenomenologically based damage model for 2D and 3D-textile composites with non-crimped reinforcement. *Materials & Design* 32 (2011), pp. 2532-2544
- Böhm, R.; Gude, M.; Hufenbach, W.: A phenomenologically based damage model for textile composites with crimped reinforcement. *Composites Science and Technology*, 70 (2010), pp. 81-87.
- 8. Böhm, R.; Stiller, J.; Behnisch, T.; Zscheyge, M.; Radloff, S.; Gude, M.; Hufenbach, W.: A quantitative comparison of the capabilities of in situ computed tomography and conventional computed tomography for damage analysis of composites. *Composites Science and Technology* 110 (**2015**), pp. 62-68.
- 9. Böhm, R.; Hufenbach, W.: Experimentally based strategy for damage analysis of textile-reinforced composites under static loading. *Composites Science and Technology* 70 (2010), pp. 1330-1337.
- Weck, D.; Sauer, S.; Adam, F.; Starke, E.; Böhm, R.; Modler, N.: Embedded sensor networks for textile-reinforced thermoplastics: sensor network design and mechanical composite performance. *Advanced Engineering Materials* 18 (2016) pp. 444-451.

Biography of Presenting Author

<u>Affiliation</u>

Prof. Dr.-Ing. habil. Robert Böhm Professor for Composite Lightweight Engineering Faculty of Engineering HTWK Leipzig PF 30 11 66, 04251 Leipzig, Germany

Scientific Career and Education

Since 2020	Professor for Composite Lightweight Engineering at HTWK Leipzig
2018-2020	Scientific coordinator of the "Research Center Carbon Fibers Saxony" (RCCF)
	at TU Dresden
11/2017	Dresden Excellence Award 2017 for outstanding research
2017-2020	Principal Investigator at the Institute for Lightweight Engineering and
	Polymer Technology (ILK) at TU Dresden
06/2017	Venia Legendi (Privatdozent) awarded by the Faculty of Mechanical Engineering at
	TU Dresden

Video Proceedings of Advanced Materials

www.proceedings.iaamonline.org

Research Professor at the Korea Institute of Science and Technology (KIST), Institute
of Advanced Composite Materials, Jeonbuk (Korea)
Habilitation in the field of "Lightweight Engineering" at TU Dresden
Freelancer at GWT-TUD GmbH Dresden
Head of the Research Group "Carbon Fibres", Institute of Lightweight Engineering
and Polymer Technology, TU Dresden
Head of the Research Group "Material Models", Institute of Lightweight
Engineering and Polymer Technology, TU Dresden
Several DAAD research visits at the University of Oxford (UK), Solid Mechanics &
Materials Engineering Group
Lectureship within the ERASMUS Programme at TU Riga (Latvia)
PhD Thesis, TU Dresden, summa cum laude
Freelancer at Leichtbau-Zentrum Sachsen GmbH Dresden
Research Associate at the Institute of Lightweight Engineering and Polymer
Technology, TU Dresden
Research Associate at Institute of Mechanics and Computational Mechanics, Leibniz
University Hanover (Germany)
EU Intensive Programme "Monitoring, Protection and Strengthening of European
Building Heritage", University of Florence (Italy)
Study of Civil Engineering at TU Dresden (Germany), Field of Study: Structural
Engineering - Mechanics

Publications and Presentations

Number of publications: 128 Number of invited presentations: 38 h-Index: 16 (Google Scholar)

Citation of Video Article

Vid. Proc. Adv. Mater., Volume 2, Article ID 2102111 (2021)

Full Video Article <u>www.proceedings.iaamonline.org/article/vpoam-2021-02111</u>